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Abstract

This paper introduces an innovative concept known as n-polar Z-hesitant Anti-Fuzzy Soft Sets
(MZHAFSs) within the framework of BCK/BCI-algebras. Soft set theory originates in the cap-
tivating field of fuzzy set theory. Our approach is a harmonious synthesis of n-polar anti-fuzzy
set theory, soft set models, and Z-hesitant anti-fuzzy sets, skillfully applied within the frame-
work of BCK/BCI-algebras. This effort leads to the introduction of a new variant of fuzzy sets
termedMZHAFSs (n-polar Z-hesitant anti-fuzzy soft sets) in the context of BCK/BCI-algebras.
Additionally, we elucidate the concept of n-polar Z-hesitant anti-fuzzy soft sets to provide a
comprehensive understanding. Furthermore, we introduce and define various related concepts,
including n-polar Z-hesitant anti-fuzzy soft subalgebras, n-polar Z-hesitant anti-fuzzy soft ide-
als, n-polar Z-hesitant anti-fuzzy soft closed ideals, and n-polar Z-hesitant anti-fuzzy soft com-
mutative ideals, and establish meaningful connections between them. We also present and rig-
orously prove several theorems that are pertinent to these newly introduced notions.
Keywords: n-polar Z-hesitant anti-fuzzy sets; fuzzy logic; fuzzy control.
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1 Introduction

In disciplines like economics, engineering, environmental science, social science, and manage-
ment science, intricate challenges are a common occurrence. These challenges often manifest with
features such as uncertainty, imprecision, and vagueness. Conventional methods struggle to ef-
fectively address these issues due to the diverse nature of uncertainties involved. Additionally,
despite the availability of mathematical theories like probability, fuzzy set (FS), interval math-
ematics, and rough set as prospective approaches for addressing uncertainty, it is worth noting
that Molodtsov Molodtsov introduced the concept of soft sets theory in 1999 as a novel mathe-
matical framework designed tomanage uncertainty [29]. In response to these intricate challenges,
Molodtsov introduced a pioneering mathematical tool known as soft set theory, designed to grap-
ple with uncertainties and imprecisions. This theory has demonstrated its efficacy in various
practical applications, including decision-making, measurement theory, and game theory [28].
Importantly, the versatility of the soft set model allows it to seamlessly integrate with other math-
ematical frameworks. Maji and colleagues pioneered the fusion of fundamental concepts from
fuzzy sets (FSs) and soft sets, introducing the innovative notion of fuzzy soft (FSo) sets [27], and
some proprities fuzzy soft sets in [4]. It’s worth noting that the formulation of FSs traces back to
Zadeh’s initial work in 1965 [35].

In recent years, research in the field of fuzzy sets and their applications has seen remarkable
growth, with several pivotal contributions that have expanded our understanding of these math-
ematical structures. Notable among these works, are Q-fuzzy soft set [3], New types of hesitant
fuzzy soft set ideals in BCK-algebras [8], hesitant anti-fuzzy soft set in BCK-algebras [9]. In ad-
dition to these, the literature is enriched with various other contributions, including a decision-
making approach based on a multi Q-hesitant fuzzy soft multi-granulation rough model by Al-
sager et al. [7].

In 2010, Torra introduced a method for expressing people’s hesitancy in everyday situations.
Hesitant FSs have found invaluable utility in decision-making scenarios, providing a precise av-
enue for capturing uncertainty through the viewpoints of decision-makers [32]. Bridging the
realms of classical soft sets and hesitant FSs. In 2013, the concept of hesitant fuzzy soft sets was
first proposed by Babitha and John [11]. On the contrary, back in 1966, Imai and Iseki introduced
the concepts of BCI and BCK algebras, contributing to the field of universal algebrawith structures
that model specific aspects of propositional calculus, specifically implication. These structures are
known as BCI and BCK logics.

In 2014, Chen and their teamdelved further into the realm of bipolar FSs, introducing the novel
concept of n-polar FSs. Their research brought to light a fundamental mathematical equivalence
between bipolar FSs and 2-polar FSs [12]. Additionally, Yehia explored the realms of fuzzy ide-
als and fuzzy subalgebras in [33]. Subsequently, the realm of Lie algebras has been extended to
include fuzzy frameworks. In the literature review, we find several recent contributions closely
related to our research. For example, Yehia’s work on fuzzy ideals and fuzzy subalgebras of Lie
algebras [33], provides a foundation for understanding the concept of fuzzy sets and systems.
El-Bably et al. [16]’s study on topological reduction for predicting lung cancer disease, has been
influential in enhancing prediction models for diseases.

El-Bably and El-Atik [15]’s exploration of soft β-rough sets, has been immensely valuable in
discerning COVID-19, a subject of profound significance in current times. Moreover, El-Gayar et
al. [18]’s research on economic decision-making employing rough topological structures , has ex-
panded our comprehension of economic applications. In addition, Yusoff et al. [34]’s study on
the circular q-rung orthopair fuzzy set and its algebraic properties contributes to further advance-
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ments in this field.

In the realm of medical diagnosis, Abu-Gdairi and collaborators have delved into the topolog-
ical visualization and graph analysis of rough sets concerning human heart data [1]. El-Bably et
al. introduced novel topological approaches to generalized soft rough approximations in medi-
cal applications [14], and their exploration of medical diagnosis for Chikungunya disease using
soft rough sets has notably contributed to the field [13]. Atef et al.’s investigation into covering
soft rough sets and their topological properties has further expanded the scope of this domain
[10]. Furthermore, recent years have seen extensive research driven by the potential applications
of fuzzy sets across diverse domains. Jun et al. notably applied fuzzy soft set theory to BCK/BCI-
algebras [24], while Muhiuddin et al. explored generalized ideals of BCK/BCI-Algebras based on
fuzzy soft set theory [30], making significant strides in this area [31].

Moreover, Abu-Gdairi et al. [2] have explored the application of fuzzy point concepts to fuzzy
topological spaces, opening up new possibilities for understanding topological structures. El-
Bably and El-Sayed [17], have introduced innovative methods to generalize Pawlak approxima-
tions using simply open concepts, with specific applications in economics. The ongoing challenges
posed by the COVID-19 pandemic have motivated research on topological models of rough sets
and their application to decision-making, as demonstrated by El-Gayar and El-Atik [19]. Lu et al.
[26] have introduced a novel type of generalized picture fuzzy soft set with practical applications
in decision-making processes.

Furthermore, Ali et al. [6] have proposed a topological approach to generalized soft rough sets
via near concepts, contributing to the advancement of this field. Additionally, Abd El-Monsef et
al. [20] conducted a comparative analysis of three types of rough fuzzy sets based on two univer-
sal sets, providing valuable insights. These recent contributions have expanded the boundaries
of fuzzy set theory and its applications, laying the groundwork for further exploration and re-
search in this domain. On the other hand, the study on n-polar fuzzy Lie ideals within the context
of Lie algebras, exploring their diverse properties related to nilpotency, is complemented by the
introduction of n-polar fuzzy adjoint representations of Lie algebras and their correlation with
nilpotent n-polar fuzzy Lie ideals. Additionally, recent contributions, such as the exploration of
m-polar fuzzy ideals of BCK/BCI-algebras [5] have significantlywidened the scope and addressed
specific challenges within this field.

This paper organization is as follows: In Section 2, we offer an overview of pertinent studies
that have influenced our research. In Section 3, we provide a comprehensive definition of the n-
polar Z-hesitant anti-FSo set for subalgebras. Moving on to Section 4, we introduce the concept of
n-polar Z-hesitant anti-fuzzy ideals specifically within the context of BCK/BCI-algebras. Moving
on to Section 5, we investigate the notion of a closed n-polar Z-hesitant anti-FSo ideal. Section 6 is
dedicated to discussing the concept of an n-polar Z-hesitant anti-FSo commutative ideal. Finally,
the last section offers a conclusion and outlines our future research ideas.

2 Preliminaries

In this section, we revisit fundamental definitions that serve as the bedrock of our research.
Definition 2.1. An algebra denoted as (X; ∗, 0) of type (2, 0) is defined as a BCK-algebra if it satisfies the
following conditions:
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1.
(
∀i, j, k ∈ X

)((
i ∗ j

)
∗
(
i ∗ k

))
∗
(
k ∗ j

)
= 0.

2.
(
∀i, j ∈ X

)((
i ∗

(
i ∗ j

))
∗ j = 0

)
.

3.
(
∀i ∈ X

)(
i ∗ i = 0

)
.

4.
(
∀i, j ∈ X

)(
i ∗ j = 0, j ∗ i = 0 → i = j

)
.

5.
(
∀i ∈ X

)(
0 ∗ i = 0

)
.

Then, X is referred to as a BCK-algebra. Any BCK-algebra X must adhere to the following axioms:

6.
(
∀i ∈ X

)(
i ∗ 0 = i

)
.

7.
(
∀i, j, k ∈ X

)(
i ≤ j → i ∗ k ≤ j ∗ k, k ∗ j ≤ k ∗ i

)
.

8.
(
∀i, j, k ∈ X

)(
(i ∗ j) ∗ k = (i ∗ k) ∗ j

)
.

9.
(
∀i, j, k ∈ X

)((
i ∗ k

)
∗
(
j ∗ k

)
≤ i ∗ j

)
where i ≤ j if and only if i ∗ j = 0.

In addition, any BCI-algebra X must satisfy the following additional axiom:

1.
(
∀i, j, k ∈ X

)(
0 ∗

(
0 ∗

((
i ∗ k

)
∗
(
j ∗ k

))))
=

(
0 ∗ j

)
∗
(
0 ∗ i

)
.

Definition 2.2. [21] A non-empty subset S of a BCK/BCI-algebra X is considered a subalgebra if, for all
i, j ∈ S, i ∗ j ∈ S.

Definition 2.3. [21] A non-empty subset I of a BCK/BCI-algebra X is called an ideal if it satisfies the
following conditions:

ID1: 0 ∈ I .

ID2: (∀a, b ∈ X)(a ∗ b ∈ I, a ∈ I → b ∈ I).

Definition 2.4. [22] ConsiderX as a BCK/BCI-algebra. We can represent a hesitant FS onX asH , and
denote it as follows: H := {(a, µH(a))|a ∈ X}, is termed a hesitant fuzzy subalgebra if it satisfies the
following condition: (

∀a, b ∈ X
)(

µH

(
a ∗ b

)
⊇ µH(a) ∩ µH(b)

)
. (1)

Definition 2.5. [22] Assuming X is a BCK/BCI-algebra, we can define a hesitant FS on X as H , repre-
sented asH := (a, µH(a))|a ∈ X . It qualifies as a hesitant fuzzy ideal if it meets the following requirement:(

∀a, b ∈ X
)(

µH(a ∗ b) ∩ µH(b) ⊆ µH(a) ⊆ µH(0)
)
. (2)

Definition 2.6. [23] Given a subset λ of P , a hesitant FSo set denoted as (H,λ) over the set X is termed
a hesitant FSo subalgebra with respect to e ∈ λ if the hesitant FS H[e] := (a, µH[e]

(a))|a ∈ X establishes
itself as a hesitant fuzzy subalgebra within the context of X .

Definition 2.7. [23] When considering a subset λ of P , a hesitant FSo set denoted as (H,λ) over the set
X earns the title of a hesitant FSo ideal based on e ∈ λ if the hesitant FS H[e] := (a, µH[e]

(a))|a ∈ X is
recognized as a hesitant fuzzy subalgebra of X .
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Definition 2.8. [7] LetX be a non-empty finite universe and Z be a non-empty set. A Z-hesitant FSHZ

is a set defined as:

HZ =
{(

(a, z), µHZ
(a, z)

)
| a ∈ X, z ∈ Z

}
, (3)

where µHZ
: X × Z → [0, 1].

Definition 2.9. For a subset λ of P , let X be a non-empty finite universe and Z be a non-empty set. The
Z-hesitant FSo set based on e ∈ λ is defined as:

HZ[e]
=

{(
(a, z), µHZ[e]

(a, z)
)
| a ∈ X, z ∈ Z

}
, (4)

where µHZ[e]
: X × Z → [0, 1].

Definition 2.10. An n-polar Z-hesitant FS on a non-empty set X is a mapping HZ : X × Z → [0, 1]n.
The membership value of every element a ∈ X is denoted by:

HZ =
{(

(a1, z), µHZ
(a1, z)

)
,
(
(a2, z), µHZ

(a2, z)
)
, . . . ,

(
(an, z), µHZ

(an, z)
)}

, (5)

which we can write as:

Hi =
{(

(a, z), µi
HZ

(a, z)
)
| a ∈ X, z ∈ Z

}
, (6)

for all i = 1, 2, . . . , n, where Hi : [0, 1]n → [0, 1] is the i-th projection.

3 n-polar Z-hesitant Anti-fuzzy Soft Subalgebra

In this section, we present a new concept of n-polar Z-hesitant anti-FSo set, its theorems, and
some of its fundamental properties.
Definition 3.1. Let X be a BCK/BCI-algebra. We define the n-polar Z-hesitant anti-FS Hi on X as
follows:

Hi =
{(

(a, z), µi
HZ

(a, z)
)
| a ∈ X, z ∈ Z

}
. (23)

This collection is denoted as an n-polar Z-hesitant anti-fuzzy subalgebra when, for each i = 1, 2, . . . , n it
fulfills the following criterion:

∀ a, b ∈ X, z ∈ Z : µHi(a ∗ b, z) ⊆ µHi(a, z) ∪ µHi(b, z). (24)

Definition 3.2. Consider a set of elements P . For any subset λ of P , we define an n-polar Z-hesitant
anti-FSo set (Hi, λ). This set is termed an n-polar Z-hesitant anti-FSo subalgebra based on an element
e ∈ λ if the n-polar Z-hesitant anti-FS Hi on X , given by:

Hi =
{(

(a, z), µi
HZ

(a, z)
)
| a ∈ X, z ∈ Z

}
. (25)

Is considered a Z-hesitant anti-FSo subalgebra within the scope of X for all i = 1, 2, . . . , n.

Example 3.1. Let X = {ℵ1,ℵ2,ℵ3} be a BCK-algebra set, and consider the operation ∗ on X defined in
the following Table 1:
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Table 1: Operation ∗ on set X .

∗ ℵ1 ℵ2 ℵ3

ℵ1 ℵ1 ℵ1 ℵ1

ℵ2 ℵ2 ℵ1 ℵ2

ℵ3 ℵ3 ℵ3 ℵ1

Then, (X, ∗,ℵ1) is a BCK-algebra.

Consider the setZ = {φ}, and a element setZ = {e1, e2}, let n = 2, which is described in the following
Table 2:

Table 2: 2-polar Z-hesitant anti-FSo subalgebra with respect to elements in X .

X (ℵ1, φ) (ℵ2, φ) (ℵ3, φ)

e1 (0.9, 0.9)(0.7) (0.5, 0.3)(0.1, 0.3) (0.3, 0.3)(0.5, 0.3)

e2 (0.5, 0.6, 0.5)(0.9, 0.9) (0.4)(0.1, 0.1, 0.1) (0.2)(0.1, 0.3)

The table presented earlier demonstrates that, with respect to the given elements, it constitutes a 2-polar
Z-hesitant anti-FSo subalgebra within the context of X.

Proposition 3.1. If (Hi, λ) is an n-polar Z-hesitant anti-FSo subalgebra over X , then for all a ∈ X and
z ∈ Z,

µHi
[e]
(a, z) ⊇ µHi

[e]
(0, z). (7)

In this context, e can be any element within the set λ, while i varies over the range from 1 to n.

Proof. For every a in X and e within λ,
µHi

[e]
(0, z) = µHi

[e]
(a ∗ a, z)

⊆ µHi
[
e](a, z) ∪ µHi

[e]
(a, z)

= µHi
[e]
(a, z).

Here, with z belonging to set Z and i spanning from 1 to n. This concludes the proof.
Proposition 3.2. If every n-polar Z-hesitant anti-FSo subalgebra ofX adheres to the following inequality:

∀a, b ∈ X,∀z ∈ Z : µHi[e](a ∗ b, z) ⊆ µHi
[e](a, z), (8)

for all i = 1, 2, . . . , n, then it follows that:

µHi[e](a, z) = µHi
[e](0, z). (9)

Proof. By using ∀a ∈ X : a ∗ 0 = a from BCI/BCK-algebra definition. Then, let a ∈ X , z ∈ Z, and
e ∈ λ, we have,

µHi
[e]
(a, z) = µHi

[e]
(a ∗ 0, z)

⊆ µHi
[e]
(0, z). (10)
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It follows from the previous proposition that,

µHi
[e]
(a, z) = µHi

[e]
(0, z). (11)

4 n-polar Z-hesitant Anti-fuzzy Soft Ideal

Let’s start by defining the concept of a Z-hesitant fuzzy ideal.
Definition 4.1. Let,

Hi =
{
(a, z), µHi

Z
(a, z) | a ∈ X, z ∈ Z

}
, (12)

be a Z-hesitant anti-FS in X . Then Hi is called an n-polar Z-hesitant anti-fuzzy ideal of X if it satisfies
the following conditions:

1. µHi
Z
(0, z) ⊆ µHi

Z
(a, z) for all a ∈ X , z ∈ Z.

2. µHi
Z
(a, z) ⊆ µHi

Z
(a ∗ b, z) ∪ µHi

Z
(b, z) for all a, b ∈ X , z ∈ Z, and i = 1, 2, . . . ,m.

Definition 4.2. Consider (Hi, λ) as a hesitant anti-FSo set overX , with λ denoting a subset of the element
set P . If e ∈ λ, we designate (Hi, λ) as an n-polar Z-hesitant anti-FSo ideal, based on the presence of e in
λ, provided that the n-polar Z-hesitant anti-FS,

Hi =
{
(a, z), µHi

Z
(a, z) | a ∈ X, z ∈ Z

}
. (13)

Is considered a hesitant fuzzy ideal within the scope of X for all i = 1, 2, . . . , n.

Example 4.1. Let X = {ℵ1,ℵ2} be the BCK-algebra set. We consider the operation ∗ defined in the
following Table 3:

Table 3: Operation ∗ on setX .

∗ ℵ1 ℵ2

ℵ1 ℵ1 ℵ1

ℵ2 ℵ2 ℵ1

Then (X, ∗,ℵ1) is a BCK-algebra.

Now, define the set Z = {α, β}, and the element set is Z = {p1, p2, p3} with a 2-polar anti-FS on X ,
which is described in the following Table 4:

Table 4: Description of 2-polar Z-hesitant anti-FSo ideal.

(ℵ1, α) (ℵ1, β) (ℵ2, α) (ℵ2, β)

p1 (0.9, 0.8) (0.8, 0.8) (0.7, 0.5, 0.3) (0.5, 0.5) (0.6, 0.9, 0.3)([0.1, 0.8) (0.7, 0.4) (0.5, 0.3, 0.1)
p2 (0.9) (0.7, 0.7) (0.8, 0.8) (0.9, 0.6, 0.7) (0.6, 0.3, 0.9) (0.6, 0.7) (0.3, 0.8) (0.4, 0.9)
p3 (0.8) (0.8, 0.8) (0.7, 0.7) (0.8) (0.5, 0.8) (0.1, 0.8) (0.2, 0.7) (0.4, 0.8)
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Thus, it’s a 2-polar Z-hesitant anti-FSo ideal.

Theorem 4.1. For any BCK-algebra X , every n-polar Z-hesitant anti-FSo ideal is a n-polar Z-hesitant
anti-FSo subalgebra.

Proof. Let e ∈ λ, z ∈ Z, and (Hi, λ) be a n-polar Z-hesitant anti-FSo ideal over X . Then,

µHi
[e]
(a ∗ b, z) ⊆ µHi

[e]

(
(a ∗ b) ∗ a, z

)
∪ µHi

[e]
(a, z)

= µHi
[e]

(
(a ∗ a−1) ∗ b, z

)
∪ µHi

[e]
(a, z)

= µHi
[e]
(0 ∗ b, z) ∪ µHi

[e]
(a, z)

= µHi
[e]
(0, z) ∪ µHi

[e]
(a, z)

⊆ µHi
[e]
(b, z) ∪ µHi

[e]
(a, z).

For every a, b ∈ X , z ∈ Z, and for each i = 1, 2, . . . , n, it follows that (Hi, λ) constitutes an n-polar
Z-hesitant anti-FSo subalgebra within the domain of X. This concludes the proof.
Proposition 4.1. All n-polar Z-hesitant anti-FSo ideals, denoted as (Hi, λ), within the context of X ,
adhere to the following:

∀e ∈ λ,∀z ∈ Z,∀a, b, c ∈ X : (a, b ≤ c− ϵ)µHi
[e]
(a, z) ⊆ µHi

[e]
(b, z) ∪ µHi

[e]
(c, z). (14)

Proof. Let e ∈ λ, z ∈ Z, and a, b, c ∈ X such that a · b ≤ c. Then, (a ∗ b) ∗ c = 0, and so:

µHi
[e]
(a ∗ b, z) ⊆ µHi

[e]

(
(a ∗ b) ∗ c, z

)
∪ µHi

[e]
(c, z)

= µHi
[e]
(0, z) ∪ µHi

[e]
(c, z)

= µHi
[e]
(c, z),

it follows that,

µHi
[e]
(a, z) ⊆ µHi

[e]
(a ∗ b, z) ∪ µHi

[e]
(b, z) ⊆ µHi

[e]
(b, z) ∪ µHi

[e]
(c, z).

This completes the proof.
Proposition 4.2. Every n-polar Z-hesitant anti-FSo ideal over BCI-algebra X satisfies the following:

∀e ∈ λ,∀z ∈ Z,∀a ∈ X : µHi
[e]

(
0 ∗ (0 ∗ a), z

)
⊆ µHi

[e]
(a, z). For all i = 1, 2, . . .m. (15)

Proof. Let (Hi, λ) be a n-polar Z-hesitant anti-FSo ideal. Then, for e ∈ λ, z ∈ Z, and a ∈ X , we
have:

µHi
[e]
(0 ∗ (0 ∗ a), z) ⊆ µHi

[e]

((
0 ∗ (0 ∗ a)

)
∗ a, z

)
∪ µHi

[e]
(a, z)

= µHi
[e]
(0, z) ∪ µHi

[e]
(a, z)

= µHi
[e]
(a, z).

With this, we conclude the proof.
Proposition 4.3. Each n-polar Z-hesitant anti-FSo ideal satisfies the following conditions:
For all a, b, c ∈ X , for all z ∈ Z and e ∈ λ:
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1. If a ≤ b, then µHi
[e]
(a, z) ⊆ µHi

[e]
(b, z).

2. µHi
[e]
(a ∗ b, z) ⊆ µHi

[e]
(a ∗ c, z) ∪ µHi

[e]
(c ∗ b, z).

3. If µHi
[e]
(a ∗ b, z) = µHi

[e]
(0, z), then µHi

[e]
(a, z) ⊆ µHi

[e]
(b, z).

Proof. Assume e ∈ λ, z ∈ Z, and a, b, c ∈ X :

1. We have a ≤ b, then a ∗ a−1 = 0 because (Hi, λ) is a n-polar Z-hesitant anti-FSo ideal of X .
As a result:

µHi
[e]
(a, z) ⊆ µHi

[e]
(a ∗ b, z) ∪ µHi

[e]
(b, z)

⊆ µHi
[e]
(b, z).

2. From (a ∗ b) ∗ (a ∗ c) ̸≤ c ∗ b, we get:

µHi
[e]

(
(a ∗ b) ∗ (a ∗ c), z

)
⊆ µHi

[e]
(c ∗ b, z). Therefore,

µHi
[e]
(a ∗ b, z) ⊆ µHi

[e]

(
(a ∗ b) ∗ (a ∗ c), z

)
∪ µHi

[e]
(a ∗ c, z)

⊆ µHi
[e]
(a ∗ c, z) ∪ µHi

[e]
(c ∗ b, z).

µHi
[e]

(
(a ∗ b) ∗ (a ∗ c), z

)
⊆ µHi

[e]
(c ∗ b, z)

⇒ µHi
[e]
(a ∗ b, z) ⊆ µHi

[e]
(a ∗ c, z) ∪ µHi

[e]
(c ∗ b, z).

3. If µHi
[e]
(a ∗ b, z) = µHi

[e]
(0, z), then:

µHi
[e]
(a, z) ⊆ µHi

[e]
(a ∗ b, z) ∪ µHi

[e]
(b, z)

= µHi
[e]
(0, z) ∪ µHi

[e]
(b, z)

= µHi
[e]
(b, z).

With this, we conclude the proof.

5 Closed n-polar Z-hesitant Anti-FSo Ideal

In this section we explore the idea of Closed n-polar Z-hesitant anti-FSo ideal.
Definition 5.1. A n-polar Z-hesitant anti-fuzzy ideal,

Hi =
{
(a, z), µi

H(a, z) | a ∈ X, z ∈ Z
}
. (16)

In the context of a BCI-algebra, we consider it closed when

µi
H(a, z) ⊇ µi

H(0 ∗ a, z), (17)

for all a ∈ X , z ∈ Z, and i = 1, 2, . . . , n.

637



K. M. Alsager Malaysian J. Math. Sci. 17(4): 629–644(2023) 629 - 644

Definition 5.2. An n-polar Z-hesitant anti-FSo ideal, denoted as (Hi, λ), established over a BCI-algebra
X and centered around a element e ∈ λ, is deemed closed if the hesitant anti-FS,

Hi
[e] =

{
(a, z), µi

H[e]
(a, z) | a ∈ X, z ∈ Z

}
. (18)

Is regarded as a closed hesitant anti-fuzzy ideal within the scope of X for all i = 1, 2, . . . , n.

Example 5.1. LetX = {ℵ1,ℵ2} be the BCK-algebra set with a binary operation "∗", which is given in the
following Table 5:

Table 5: Operation ∗ on setX .

∗ ℵ1 ℵ2

ℵ1 ℵ1 ℵ1

ℵ2 ℵ2 ℵ1

Now, let Z = {A} with a 2-polar anti-FS in X . Then the elements set is defined as Z = {e1, e2} in Table
6.

Table 6: Description of closed n-polar Z-hesitant anti-FSo ideal.

(ℵ1, A) (ℵ2, A)

e1 [0.9] (0.8, 0.7) (0.7, 0.7) (0.4, 0.9) (0.3, 0.8, 0.4) (0.6, 0.7, 0.2)
e2 (0.5) (0.6, 0.7, 0.9) (0.8, 0.8) (0.5, 0.1) (0.3, 0.9, 0.5) (0.8, 0.2)

Then it’s a closed n-polar Z-hesitant anti-FSo ideal.

Theorem 5.1. Consider (Hi, λ) as an n-polar Z-hesitant anti-FSo set. Then, a closed n-polar Z-hesitant
anti-FSo ideal within the BCI-algebra X , which is centered around a specific element, is essentially an n-
polar Z-hesitant anti-FSo subalgebra over X that shares the same element.

Proof. Consider (Hi, λ) be a closed n-polar Z-hesitant anti-FSo ideal overX based on e ∈ λ. Then,
µHi

[e]
(a, z) ⊇ µHi

[e]
(0 ∗ a, z).

When considering all a, b ∈ X , z ∈ Z, and i = 1, 2, . . . ,m, it can be deduced that,
µHi

[e]
(a ∗ b, z) ⊆ µHi

[e]

(
(a ∗ b) ∗ a, z

)
∪ µHi

[e]
(a, z) ⊆ µHi

[e]
(a, z) ∪ µHi

[e]
(b, z),

for all a, b ∈ X , z ∈ Z. Hence, (Hi, λ) qualifies as an n-polarZ-hesitant anti-FSo subalgebrawithin
the context of X, based on the presence of the element e ∈ λ for all i = 1, 2, . . . , n.

Theorem 5.2. Let (Hi, λ) represent an n-polar Z-hesitant anti-FSo ideal within a BCI-algebra X , based
on a element e ∈ λ. We designate it as ’closed’ if and only if it satisfies the following condition:

∀a, b ∈ X, z ∈ Z : µHi
[e]
(a ∗ b, z) ⊆ µHi

[e]
(a, z) ∪ µHi

[e]
(b, z). (19)

Proof. (⇒)We start by assuming that (Hi, λ) is a closed n-polar Z-hesitant anti-FSo ideal in a BCI-
algebra X based on a element e ∈ λ. Consider the fact that for all a, b ∈ X , we have a ∗ b ≤ 0 ∗ b.
Therefore, we can establish the following relationship:

µHi
[e]
(a ∗ b, z) ⊆ µHi

[e]
(a, z) ∪ µHi

[e]
(0 ∗ b, z) ⊆ µHi

[e]
(a, z) ∪ µHi

[e]
(b, z).
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This holds true for all a, b ∈ X , z ∈ Z, and i = 1, 2, . . . , n.

(⇐) On the contrary, (Hi, λ) be an n-polar Z-hesitant anti-FSo ideal over a BCI-algebra X based
on a element e ∈ λ. Given that,

µHi
[e]
(a, z) ⊇ µHi

[e]
(0, z),

for all a ∈ X , z ∈ Z, we can deduce that,
µHi

[e]
(0 ∗ a, z) ⊆ µHi

[e]
(0, z) ∪ µHi

[e]
(a, z) = µHi

[e]
(a, z).

This relationship holds for all a ∈ X , z ∈ Z. As a result, (Hi, λ) represents a closed n-polar Z-
hesitant anti-FSo ideal within a BCI-algebra X, contingent on the presence of the element e ∈ λ,
for all i = 1, 2, . . . , n.

6 n-polar Z-hesitant Anti-FSo Commutative Ideal

In a previous study conducted by Jun and Meng [25], the concept of commutative ideals was
introduced. In this section, we will extend this concept by introducing the notion of an n-polar Z-
hesitant FSo commutative ideal. We will proceed to establish and confirm various properties and
theorems associated with this concept. To begin, let’s provide a formal definition of the n-polar
Z-hesitant anti-fuzzy commutative ideal.
Definition 6.1. In the context of a BCK-algebra, we define a n-polar Z-hesitant FS Hj as follows:

Hj =
{
(a, z) | µj

H(a, z) for a ∈ X, z ∈ Z
}
. (20)

Hj is termed an n-polar Z-hesitant anti-fuzzy commutative ideal of X if it adheres to the following condi-
tions:

1. µj
H(0, z) ⊆ µjHb(a, z) for all a ∈ X .

2. µj
H(a ∗ (γ ∗ (γ ∗ a)), z) ⊆ µj

H((a ∗ γ) ∗ c, z) ∪ µj
H(c, z) for all a, γ, c ∈ X and j = 1, 2, . . . , n.

Definition 6.2. Consider a n-polar Z-hesitant anti-FSo set over X , denoted as (Hi, λ), where λ forms a
subset of the elements set P . If e ∈ λ, then we define (Hi, λ) as a n-polar Z-hesitant anti-FSo commutative
ideal. This definition hinges on the n-polar Z-hesitant anti-FS Hi

[e], which is expressed as:

Hi
[e] :=

{
(a, z) | µi

H[e]
(a, z) for a ∈ X, z ∈ Z

}
. (21)

Moreover, it must meet the conditions of being a hesitant anti-fuzzy commutative ideal within the domain
of X for all i = 1, 2, . . . , n.

Example 6.1. Consider the set X = {ℵ1,ℵ2,ℵ3} representing a BCK-algebra set. Let’s define the set
Z = {ξ} and introduce a set of elements denoted as E = {e1, e2, e3}. We also have a 2-polar anti-FS inX .
Initially, we define the binary operation ∗ on X as follows using the Cayley Table 7:

Table 7: Operation ∗ on set X .

∗ ℵ1 ℵ2 ℵ3

ℵ1 ℵ1 ℵ1 ℵ1

ℵ2 ℵ2 ℵ1 ℵ2

ℵ3 ℵ3 ℵ3 ℵ1
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It shows that (X, ∗,ℵ1) is a BCK-algebra. Let:

Table 8: Description of 2-polar Z-hesitant anti-FSo commutative ideal.

(ℵ1, ξ) (ℵ2, ξ) (ℵ3, ξ)

e1 (0.9) (0.8 0.9) (0.4 0.3 0.9 ) (0.6 0.9) (0.3 0.9) (0.1 0.9 0.4)
e2 (0.8) ( 0.9 ) (0.8 0.1 )( 0.2 0.9) (0.6 0.8) ( 0.5 0.9 0.3)
e3 (0.8) (0.7) ( 0.3 0.8) (0.1 0.7 0.1) ( 0.3 0.8) (0.4 0.7 0.3 0.1)

The previous Table 8 shows that it’s a 2-polar Z-hesitant anti-FSo commutative ideal.

Theorem 6.1. Every n-polarZ-hesitant anti-FSo commutative ideal also qualifies as an n-polarZ-hesitant
anti-FSo ideal of X .

Proof. For any a, b, c inX , q in Z, and e in λ, let’s consider (Hi, λ) as a n-polar Z-hesitant anti-FSo
commutative ideal of X .

µHi
[e]
(a, z) = µHi

[e]

(
a ∗ (0 ∗ (0 ∗ a)), z

)
⊆ µHi

[e]

(
(a ∗ 0), z

)
∪ µHi

[e]
(c, z) ∪ µHi

[e]
(c ∗ c, z) ∪ µHi

[e]
(c, z).

This holds for all a, c in X , q in Z, and e in λ. Consequently, (Hi, λ) qualifies as an n-polar Z-
hesitant anti-FSo ideal.
Theorem 6.2. Suppose (Hi, λ) represents a n-polar Z-hesitant anti-FSo ideal. Then, it is identified as a
n-polar Z-hesitant anti-FSo commutative ideal if and only if it adheres to the condition:

µHi
[e]

(
a ∗ (b ∗ (a ∗ b)), z

)
⊆ µHi

[e]
(a ∗ b, z), (22)

for all a, b in X , q in Z, and e in λ.

Proof. Consider a, b ∈ X , z ∈ Z, and e ∈ λ,

(⇒) (Hi, λ) being a n-polar Z-hesitant anti-FSo commutative ideal of X implies that when c = 0,
we have

µHi
[e]

(
a ∗ (b ∗ (a ∗ b)), z

)
⊆ µHi

[e]
(a ∗ b ∗ 0, z) ∪ µHi

[e]
(0, z) = µHi

[e]
(a ∗ b, z).

(⇐) Conversely, if (Hi, λ) satisfies,

µHi
[e]

(
a ∗ (0 ∗ (0 ∗ a)), z

)
⊆ µHi

[e]
(a ∗ b, z),

then,

µHi
[e]
(a ∗ b, z) ⊆ µHi

[e]

(
(a ∗ b) ∗ c, z

)
∪ µHi

[e]
(c, z).

By combining these equations, we deduce that,

µHi
[e]

(
a ∗ (b ∗ (b ∗ a)), z

)
⊆ µHi

[e]

(
(a ∗ b) ∗ c, z

)
∪ µHi

[e]
(c, z),

valid for all a, b, c ∈ X , z ∈ Z, and e ∈ λ. Consequently, (Hi, λ) is a n-polar Z-hesitant anti-FSo
commutative ideal.
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7 Conclusion

The concept of n-polar Z-hesitant anti-FSo sets in BCK-algebras plays a pivotal role in bridging
the gap between algebraic structures and anti-FSo set theory, making a significant contribution to
the field of abstract algebra.

While our research has shed light on the potential applications and extensions of n-polar Z-
hesitant anti-FSo sets, it’s important to acknowledge the limitations of our study. One limitation is
the scope of our research sample, whichmay not encompass the full breadth of scenarios in which
this concept could be applied. Future studies with larger andmore diverse datasets could provide
deeper insights.

Moreover, there is room for continuous exploration and advancement in this area. Several
intriguing questions and avenues for further research have emerged from our study, including:

• The theory of FSo sets holds a significant place in the domain of fuzzy topological spaces.
Can we extend this theory to introduce the notion of fuzzy BCK-algebra topological spaces,
subsequently defining n-polar Z-hesitant anti-FSs in such spaces?

• Is it possible to establish the concept of fuzzy BCK-algebra ideal spaces as a precursor, paving
the way for the definition of n-polar Z-hesitant anti-FSs in these ideal spaces?

• Exploring real-world applications of n-polar Z-hesitant anti-FSo sets in various domains,
such as decision-making, data analysis, and beyond.

These questions not only underscore the current significance of n-polar Z-hesitant anti-FSo sets
but also provide intriguing directions for future research and exploration within this field.

In summary, while our research has expanded our understanding of n-polar Z-hesitant anti-
FSo sets, the journey is far from over. It is through the continuous exploration of these concepts
and their practical applications that we can unlock new possibilities and advance the field further.

List of Abbreviations

MZHAFSs : n-polar Z-hesitant Anti-Fuzzy Soft Sets
FS : Fuzzy Set
FSs : Fuzzy Sets
FSo : Fuzzy Soft
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